Understanding and sustaining insect pollinators in your garden

Celeste A. Searles Mazzacano, Ph.D.
Presented for EMSWCD

Yellow-faced bumble bee; C.A.S. Mazzacano © 2017 C. A. Searles Mazzacano

Insect Pollinators

A. Importance of pollinators
B. Cast of characters
C. Creating habitat
D. Sustaining habitat
E. Projects & resources

Why are pollinators important?

• pollination: transfer of pollen within or between flowers for fertilization, seed & fruit set
• wind, insects, birds, mammals

Why are pollinators important?

• 70% of flowering plants pollinated by insects
 - most pollinated by bees
• 87 of 115 leading US food crops depend on insect pollinators

Importance of bees to food production
(from Wilson & Carrill, 2016)
Who pollinates?

More than insects!!!!!

- Bats
- Hummingbirds

Who pollinates?

More than bees!!!!!

- Wasps
- Flies
- Beetles
- Moths & butterflies

Who pollinates?

More than European honey bees!!!!!!

- > 4,000 spp. of native bees in North America
 - bumble, mining, mason, leafcutter, orchard, sweat, digger, and carpenter bees

Who pollinates?

“Managed” bees are economically important

- honey bees, bumble bees, orchard mason bees, alfalfa leafcutter bees
Challenges for pollinators

Many stressors

- habitat loss
- pesticides
- diseases (viruses, fungi, bacteria)
- parasites (varroa mite, tracheal mite)

Challenges for pollinators

- Colony Collapse Disorder (2006) in managed honey bee hives
- many bumble bees are also declining
- much less known about status of other wild bees

Challenges for pollinators

- managed bees may spread & intensify disease in wild bees
- wild bees pollinate many plants more efficiently than honey bees

Challenges for pollinators

Center for Biological Diversity (2017)

- 749 of 1,437 native bee species assessed are declining (52%)
- many more species lacked population data to assess
- habitat loss, pesticides, climate change, urbanization
Types of flowers pollinated vary
- short- vs. long-tongued bees
- generalist vs. specialist foragers

Not all bees are pollinators
- nest parasites (cuckoo bees)
- “nectar robbers”
Social vs. solitary bees

- **solitary**: each female builds & provisions own nest
- **social**: shared nests, castes with different roles

Social (honey bees, bumble bees, some sweat bees)

- several generations at one time in colony or nest
- members care for offspring that aren’t theirs
- division of labor

Bees

- Carpenter, bumble, squash, long-horned, and honey bees (Apidae)
- Sweat bees (Halictidae)
- Mining bees (Andrenidae)
- Mason, carder, leaf-cutter bees (Megachilidae)
- Polyester & yellow-faced bees (Colletidae)
- Oil-collecting bees (Melittidae)
Bees

Honey bees (*Apis mellifera*)
- medium size; hairy body & eyes
- brown/black with golden bands
- visit a variety of flowers
- carry pollen in corbiculae
- less effective pollinators for some crops than many native bees

Bumble bees (*Bombus*)
- medium to large; robust, hairy
- yellow, black, orange, white, or brown hair bands
- carry pollen & nectar mix in stiff hairs (scopa) in concave basket on hind legs (corbiculum)
Bees

Bumble bees (*Bombus*)
- visit wide range of plants
- active in cooler, wetter weather than honey bees can tolerate
- buzz pollination

Sweat bees (Halictidae)
- range of sizes & colors
- may be metallic, striped
- short-tongued
- carry pollen on hind legs
- most are ground-nesting; varying sociality
Bees

• Mining bees (Andrenidae)
 - range of sizes & colors
 - red, orange, cream, dark blue, striped
 - short-tongued
 - carry pollen on hind legs
 - ground-nesting

29

Perdita minima; Jillian Cowles, Discover Life
Proturaea picta; Robert Behrstock, Discover Life

29

Bees

• Leafcutter, carder, mason, and resin bees (Megachilidae)
 - small to medium
 - moderately hairy head & thorax
 - robust, cylindrical; yellow & black stripes/spots, brilliant metallic colors
 - long-tongued

30

Anthidium; Anita Gould, iNaturalist
Atoposmia copelandica; Laurence Packer, Discover Life
Ashmeadiella xenomastax; Hartmut Wisch, Discover Life

31

Bees

• Leafcutter, carder, mason, and resin bees (Megachilidae)
 - carry pollen beneath abdomen
 - solitary nesters in existing tunnels in soil, wood, stems

32

Megachile rotundata; spider-bite, iNaturalist
Mason, carder, resin, & leafcutter bees

32
Wasps

Wasps vs. bees
- less hairy
- more pronounced “waist”
- brighter color patterns
- most are predators, but some types feed young on pollen & nectar

Flies

Flies vs. bees
- only 1 pair of wings that stick out to side when perched
- big round eyes dominate head
- shorter, thinner antennae
- may be bare or hairy

Wasps

Pollen wasps (*Pseudomasaris*)
- black or brown; yellow, white or red bands; clubbed antennae
- pollen & nectar in internal crop
- solitary nesters

Flies

Flower flies (Syrphidae) & bee flies (Bombyliidae)
- bee & wasp mimics
- adults eat nectar, pollen, honeydew
- larvae predators (flower fly) or parasites (bee fly)
Beetles

- adults eat nectar, pollen, and often other insects
- bright colors & patterns
- larvae may be predators, wood-borers, or parasites

37

Beetles

- Soldier Beetles (Cantharidae)
- Long-horned Beetles (Cerambycidae)
- Blister Beetles (Meloidae)
- Flower Scarabs (Scarabaeidae)

38

Beetles

- Checkered Beetle (Cleridae)
- Soft-winged Flower Beetle (Melyridae)
- Tumbling Flower Beetle (Mordellidae)

39

Moths & Butterflies

Butterflies

- perch with wings held vertically
- sip nectar with long, straw-like proboscis

40
Moths & Butterflies

Moths
• feathery antennae; wings rooflike or flat when perched
• often night-flying
• can be important pollinators of night-blooming plants

Creating habitat

Planting for pollinators

• Nectar & pollen sources
 - diverse
 - long bloom time
 - native plants
 - species groupings
 - low & tall plants

Planting for pollinators

Flowers for bees
• purple, yellow, blue flowers; often sweet-scented
• nectar-rich
• landing platform
Planting for pollinators

Flowers for bees

- may reflect UV light
- can have nectar guides
- often with bilateral symmetry

Flowers for beetles

- long-tongued bees can access tubular flowers (penstemon, foxglove)
- dull white, green, or reddish flowers; can smell fruity, spicy, or bad
- often with open bowl shape; may lack nectar
- magnolia, aster, sunflower, rose, goldenrod, Spirea
Planting for pollinators

Flowers for flies
- small shallow flowers
- drab; pale or brown/purple
- bad odor
- elderberry, skunk cabbage

Flowers for butterflies
- composite flowers; orange, yellow, pink, blue
- perching platform
- light scent
- sages, manzanita, trumpet flower, rock cress

Flowers for moths
- white or pale flowers in clusters
- open late afternoon or night
- strong sweet smell
- pink honeysuckle, evening primrose, yucca

Spring bloom with natives
- red-flowering currant, vine maple, western crabapple, Scouler’s willow, red twig dogwood, Oregon grape, kinnikinnik, camas, globe gilia
Planting for pollinators

Summer bloom with natives

- mock orange, twinberry, salal, lupine, Douglas & birch-leaved spirea, native roses and berries, showy milkweed, Oregon sunshine, penstemon

C.A.S. Mazzacano

Penstemon; Portland Nursery

C.A.S. Mazzacano

Oregon sunshine; Portland Nursery

C.A.S. Mazzacano

Planting for pollinators

Late summer/fall bloom with natives

- Douglas’ aster, Canada goldenrod, coyote brush, pearly everlasting, seaside daisy, Oregon stonecrop

Douglas’ aster; nwplants.com

Canada goldenrod; Univ. of Waterloo

Coyote brush; calflora.net

Beyond the bloom

- water & nutrients
 - safe access for small insects
 - “puddling” sources for butterflies
- sun
 - warming in the morning, refuge in the afternoon

Western Tiger Swallowtails “puddling” for minerals; C.A.S. Mazzacano

Beneficial insect “bath”

Beyond the bloom

- shelter & nesting sites
 - dead snags (mason & leafcutter bees)
 - rotting logs (sweat bees, flower flies)
 - old rodent burrows (bumble bees)

Standing snag; C.A.S. Mazzacano
Beyond the bloom

- shelter & nesting sites
 - rock & brush piles (beetles, caterpillars, pupae)
 - undisturbed soil (ground-nesting bees, beetle & fly larvae)
 - grass clumps (nesting & overwintering)

Sustaining habitat

Integrated pest management (IPM):

- ecosystem-based strategy
- long-term prevention of pests/damage using multiple techniques
 - biological control, habitat manipulation, planting & watering practices, pest-resistant varieties
 - preserve natural system as much as possible

Beyond the bloom

- Nesting & egg-laying sites
 - stem bundles & bee blocks
 - open at 1 end only
 - tunnels <1/4” diameter, 3-5” deep; if >1/4”, then 5-6” deep

Sustaining habitat

- build healthy soil
- proper plant placement & irrigation
- plant mostly natives
- “scout” your gardens
- tolerate some damage
Sustaining habitat

- Reduce/eliminate pesticides
 - disrupts natural enemies
 - pests faster to disperse & re-colonize treated areas than natural enemies

Creating & maintaining habitat

- IF pesticides used, treat to suppress target organism only
- minimize risks to human health, non-target organisms, & environment
- use least toxic alternative (insecticidal oils & soaps, microbials)

Creating & maintaining habitat

- can plant as seeds or starts
- soil preparation & weed control important during establishment

<table>
<thead>
<tr>
<th>Common name</th>
<th>Bloom Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>meadowfoam*</td>
<td>summer</td>
</tr>
<tr>
<td>globe gilia*</td>
<td>spring</td>
</tr>
<tr>
<td>meadowfoam*</td>
<td>spring</td>
</tr>
<tr>
<td>farewell-to-spring*</td>
<td>early summer</td>
</tr>
<tr>
<td>Phacelia</td>
<td>late summer</td>
</tr>
<tr>
<td>yarrow</td>
<td>summer</td>
</tr>
<tr>
<td>Oregon sunshine</td>
<td>summer</td>
</tr>
<tr>
<td>showy milkweed</td>
<td>summer</td>
</tr>
<tr>
<td>lupine</td>
<td>summer</td>
</tr>
<tr>
<td>Douglas aster</td>
<td>fall</td>
</tr>
<tr>
<td>Canada goldenrod</td>
<td>fall</td>
</tr>
<tr>
<td>blue wild rye</td>
<td>N/A</td>
</tr>
</tbody>
</table>

*annual
Creating & maintaining habitat

Laren Leland, Portland OR

- create planting plan
- prepare planting area
- plant, mulch, water, monitor

Creating & maintaining habitat

Laren Leland, Portland OR

- exhaust weed seed bank
 - till-water-mow-weed
 (hand pull, spot-treat)

Fabian Menalled, MSU Extension, MT

Creating & maintaining habitat

Prepare planting area

- sheet composting, a.k.a. “lasagna bed”
- solarization
 - clear plastic = soil sterilization
 - black plastic = kills grass

Sustainable Living Center Oregon

Creating & maintaining habitat

Seeding

- aerial/broadcast or seed drill
- even distribution, good contact with soil
- mix with bulking agent (sand, sawdust)
- seed from 2 different directions

Texas A&M Univ.

UC Master Gardener-Sonoma Co.
Creating & maintaining habitat

Seeding

• sow perennial seeds in early fall in PNW (Sept. to mid-Oct.)

• 2 oz wildflower seed per 1000 sq. ft

Texas A&M Univ.

wildflower seed mix;
Central Coast gardening
69

Creating & maintaining habitat

pollinator demonstration garden

spring

early summer

late summer

Creating & maintaining habitat

native pollinator garden, Los Angeles CA; Carol Bernstein

OSU Extension

Pollinator pathway; Kim Smith Design

70

Creating & maintaining habitat

central CA pollinator garden; Megan O’Donald

71

Creating & maintaining habitat

bee blocks; Oregon Metro

72
Resources

- **Great Sunflower Project**
- **Encyclopedia of Life**
- **Koch, Strange, & Williams; USFS**

Resources

- **Pocket Field Guide: Native Bees of the Willamette Valley**
- **Common Bee Pollinators of Oregon Crops**
- **Wild Bee Gardens**

Resources

- **California Natural History Guides**
- **Great Sunflower Project**
- **Encyclopedia of Life**

Resources

- **Meadworscaping**
- **Bringing Nature Home**
- **Attracting Native Pollinators**
- **Pollinator Friendly Gardening**

Resources

- **Gardening for Birds, Butterflies & Bees**
- **OSU**: entomology.oregonstate.edu

Resources

- **www.oregon.gov/ODA**
- **$3.99; iOS only**
Resources

Visit emswcd.org to find more workshops and resources!

* annual plant sale!

Questions?

Celeste A. Searles Mazzacano, cmazzacano@gmail.com

Copyright © 2017 Celeste A. Searles Mazzacano. All rights reserved. This presentation or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the author.